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Abstract— In this paper we model and analyze a scenario
in the two dimensional plane involving a mobile Attacker and
stationary Defender. There are two possibilities for termination:
the Attacker can collide with the Defender (engagement) or
maneuver to a safe zone away from the Defender (retreat).
The Defender is equipped with a directional turret which
it can rotate with a bounded rate. If the turret is aligned
with the Attacker’s position, the Defender has a lock on the
Attacker and may choose to fire on the Attacker. Thus, whether
engaging or retreating, the Attacker has incentive to evade the
turret’s line of sight and thereby avoid being locked-on. In
the case of retreat, if lock-on occurs the Defender cooperates
with the Attacker by withholding fire to allow the Attacker
to retreat. However, if the Attacker chooses to engage and
lock-on occurs, the Defender will open fire on the Attacker.
We model the scenario as a set of differential games with
different cost functionals depending on the type of termination.
The agents are assumed to have full state information. In the
case that the Defender can align with the Attacker the pre-
and post-lock portions of the game are solved individually and
stitched together. The equilibrium strategies are derived in each
case, and a partitioning of the state space wherein a particular
termination condition is optimal is constructed.

I. INTRODUCTION

Real-world adversarial scenarios, such as in warfare
(e.g. suppression of enemy air defenses), often require
decisions to be made based upon complex criteria. Many
adversarial scenarios are analyzed under the auspices of
differential game theory [1], although, there, the scenario
terminates only one way and the agents are concerned
with either minimizing or maximizing their respective cost
functional – they are not free to deviate from their original
goal or intent. We investigate, in this paper, a scenario in
which a mobile Attacker, moving with simple motion, is
pitted against a static Defender modeled as a turn-constrained
turret. The Attacker (denoted A) has a decision to make
regarding whether to engage (and destroy) the Defender
(denoted D) or retreat to a safe zone. We seek, therefore,
not only the equilibrium control strategies for the agents,
but also to determine the optimal choice or intention over the
whole state space. This is an example of intention (or role)
selection, such as whether to be the pursuer or the evader in
an aerial dogfight [2]. In the scenario under consideration, D
can only pose a threat when its turret’s aim is fixed upon the
A. Thus there are potentially two segments of the scenario:
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(1) D seeks to “lock on” to A while the latter has some
interest in avoiding the turret’s line-of-sight, and (2) after
lock, A ultimately proceeds with its intent to engage or
retreat. It is possible that lock-on does not occur at all, but we
focus, in this paper, on the case in which D can steer its turret
onto A’s position. Prior to lock-on, A accumulates no cost;
afterwards, it has a control- and time-dependent running cost.
We refer to the overall scenario as the Lock-Evade, Engage
or Retreat (LEER) game. The solution method is based on
differential game theory [1], [3], optimal control [4], and the
generalized engage or retreat solution [5].

This paper extends the canonical engage or retreat
game [6] by considering a turn-constrained defense mech-
anism. Another turret-based Defender was considered in [7],
however, the look-angle dependent portion of the cost func-
tional was smooth (i.e., the turret need not be aimed directly
at the Attacker to impose a threat). The discrete switching
nature of the cost functional (and thus equilibrium behav-
iors) places this work in relation with so-called “regime-
switching” problems found in the economic differential
games literature (see, e.g., [8]). Regime-switching games
often exhibit different state evolution (dynamics) when a
firm switches regimes. In the case of the LEER game,
the evolution of the running cost changes once turret lock-
on occurs. Additionally, this work is related to signaling
in adversarial confrontations between animals, such as the
side-to-side oscillation of honey bees in the presence of
predacious hornets [9] to signal a significant retaliation if the
hornet enters the nest. Here, D essentially signals a threat to
the A by appropriately aiming its turret in order to encourage
retreat.

This work combines intent selection [2], [10] with a cost
functional that has a state-dependent jump discontinuity. To
the authors’ knowledge, this work represents a first of its
kind. Concerning the LEER problem, itself, we derive the
equilibrium Attacker and Defender strategies for engage and
retreat up to the time in which D locks onto A. These
strategies are used to partition the state space into a region
where engaging is optimal and a region where retreating is
optimal. Section II provides the problem formulation. The
solution methodology is described in Section III, and the
derivations for engagement with lock-on and retreat with
lock-on are contained in Sections V and VI, respectively.
Section VII discusses how to obtain the state space parti-
tioning and provides examples. The paper is concluded in
Section VIII.



II. PROBLEM FORMULATION

We begin by defining the state in a relative coordinate
system; z ≡ [d, α, β] ∈ R3, which is comprised of the
distance from A to D, d, the look angle of D w.r.t. A, α, and
the azimuth of A’s position relative to D w.r.t. the positive x-
axis, β. Some of the subsequent analysis is eased by utilizing
the Cartesian coordinate system. Let z̃ ≡ [x, y, γ] be the state
of the system expressed in the Cartesian frame, where x and
y are the coordinates of A and γ is D’s look angle w.r.t. the
positive x-axis. D is positioned at the origin of the Cartesian
coordinate system. The transformation between the two state
representations is xy

γ

 =

d cosβ
d sinβ
β + α

 . (1)

A has a fixed speed (normalized to 1) and controls its
instantaneous heading, ψ ∈ R (i.e. simple motion, or single
integrator dynamics). D is stationary and has control over its
turn rate, ω ∈ [−ρ, ρ] where ρ > 1 is the maximum turn rate.
Positive ω corresponds to D turning counterclockwise. D
has an additional control variable w ∈ [0, w̄], which appears
in A’s cost functional. It represents the amount of turret
firepower to apply; the turret must be aimed directly at A for
it to be effective. Let A and D’s control vectors be defined,
respectively, as uA ≡ [ψ] and uD ≡ [ω,w]. In the relative
coordinate system, the kinematics are

f(z,uA,uD) = ż =

ḋα̇
β̇

 =

 cosψ
ω − 1

d sinψ
1
d sinψ

 . (2)

The kinematics, expressed in the Cartesian coordinate sys-
tem, are

f̃(z̃,uA,uD) = ˙̃z =

ẋẏ
γ̇

 =

cos ψ̃

sin ψ̃
ω

 , (3)

where ψ̃ ≡ β + ψ is A’s heading w.r.t. the positive x-axis.
The agents are assumed to have full state information.

Ultimately, A chooses between two endings for the overall
LEER scenario: engagement or retreat. In the former, A
moves towards D and ultimately collides with it. Let the
terminal surface for engagement be defined as

E ≡ {z | d = 1} (4)

Alternatively, A bypasses D and maneuvers towards a retreat
zone, which is specified a priori. Here, the retreat zone is
the surface y = yR, and thus the terminal surface for retreat
is defined as

R ≡ {z | d sinβ = yR} (5)

The region of admissible initial conditions is defined as

Ω ≡ {z | d sinβ > yR, d > 1} . (6)

Figure 1 shows a diagram of the LEER scenario.
Within both the engage and retreat cases, D may or may
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Fig. 1. Lock-Evade, Engage or Retreat Scenario with relative and Cartesian
state representations.

is aligned with A’s position (i.e., when cosα = 1). Note
that because ρ > 1 and d > 1 D has an angular velocity
advantage over all of Ω; once a lock is achieved, D has
sufficient control authority to keep cosα = 1. Thus there
are four cases: engagement wherein D achieves a lock on A
at some point (Locked Engagement, LE), retreat with a lock
(Locked Retreat, LR), engagement without a lock (Unlocked
Engagement, UE), retreat without a lock (Unlocked Retreat,
UR).

The lock function is defined as

L(z) =

{
1 if cosα = 1,

0 otherwise.
(7)

We define cost functionals for A and D, respectively, as

JA (z0;uA(·),uD(·)) = ΨA (zf ) +∫ tf

t0

L (z(t)) (w(t) + c) dt

(8)

JD (z0;uA(·),uD(·)) = ΨD (zf ) , (9)

where c > 0 is a constant time penalty. The terminal cost
functions are defined as

ΨA (zf ) =

{
0 zf ∈ E
cA zf ∈ R

(10)

ΨD (zf ) =

{
cD zf ∈ E
0 zf ∈ R

, (11)

where cA > 0 is a constant penalty given to A for retreating
instead of engaging, and cD > 0 is a constant penalty given
to D if it is destroyed. A and D simultaneously seek to
minimize their respective cost functionals, giving rise to a
nonzero-sum differential game,

J∗A (z0;uD(·)) = min
uA(·)

JA (z0;uA(·),uD(·)) (12)

J∗D (z0;uA(·)) = min
uD(·)

JD (z0;uA(·),uD(·)) . (13)



D strictly prefers retreat and therefore seeks to make retreat
as attractive as possible for A by making engagement as
costly as possible. Note that the integral cost in (8) is nonzero
only while D has a lock on A. While A can evade D’s turret,
the integral cost is zero.

For the cases in which D is unable to achieve a lock on
A, we have L = 0 for all t ∈ [t0, tf ] and thus (8) simplifies
to JA (z0;uA(·),uD(·)) = ΨA (zf ). Therefore A’s cost is
constant: either 0, if zf ∈ E or cA, if zf ∈ R. As long as
A can guarantee arrival at E or R with cosα 6= 1 for all
t ∈ [t0, tf ] the optimal actions for A and D are not uniquely
defined. The construction of trajectories for A which can
guarantee satisfaction of this constraint is left for future
work.

III. SOLUTION METHODOLOGY

In the sections to follow, the two cases wherein D achieves
a lock on A, Locked Engagement and Locked Retreat, are
analyzed individually. Here, we describe the general solution
approach which will be specialized for each of these cases.
We will solve the LE and LR cases by splitting the game
into a pre-lock and post-lock segment, solving each segment
individually, and stitching the solutions together.

For the cases in which D achieves a lock on A, we define
the first time at which cosα = 1 as tl ∈ (t0, tf ]. Thus the
lock function L = 0 for t ∈ [t0, tl) and L = 1 for t ∈ [tl, tf ].
The pre-lock segment ends at tl when cosα = 1; at this
point, neither agent has accrued any cost (c.f. (8) and (9))
For the pre-lock segment, we define a terminal-valued zero-
sum differential game [1] with a terminal value, Φ(zl), based
on the resulting Value of the post-lock segment initialized at
zl ≡ z(tl),

Φl (zl) = VEoR (zl) (14)

with A as the minimizer and D as the maximizer, along with
the terminal boundary condition

φl (zl, tl) = αl = 0. (15)

The Value function for the post-lock segment, VEoR, corre-
sponds to the canonical engage or retreat game [6] and will
be defined precisely in Section IV (c.f. (35)). If an equilib-
rium exists, the Value function of the pre-lock differential
game satisfies

Vl (z) = min
uA(·)

max
uD(·)

Φl (zl, tl) . (16)

Because the Value of the pre-lock segment depends on the
Value of the post-lock segment, Eqs. (14)–(16) may be
thought of as a one-step dynamic programming problem.

The solution methodology proceeds with the formation of
the Hamiltonian

H = ż · λ = λd cosψ + λα

(
ω − 1

d
sinψ

)
+ λβ

1

d
sinψ,

(17)
where λ ≡

[
λd λα λβ

]
is a vector of adjoint variables.

The adjoint dynamics are given by [4] λ̇ = −∂H
∂z , which

simplifies to

λ̇d = (λβ − λα)
1

d2
sinψ, λ̇α = 0, λ̇β = 0, (18)

thus λα and λβ are constant. At t = tl, the adjoint vector
is [4]

λ> (tl) =
∂Φl
∂zl

+ ν
∂φl
∂zl

, (19)

where ν is another adjoint variable. The value of the Hamil-
tonian at the time of lock is [4]

H (tl) = −∂Φl
∂tl
− ν ∂φl

∂tl
(20)

When the functions Φl and φl do not depend on terminal
time Hl = 0, and since the system kinematics are time-
autonomous, H (t) = 0 for all t ∈ [t0, tl].
A and D’s equilibrium control strategies minimize and

maximize the Hamiltonian, respectively:

ψ∗ = arg min
ψ

H , ω∗ = arg max
ω

H ,

which becomes

cosψ∗ =
−λd√

λ2d +
(λα−λβ)2

d2

, sinψ∗ =
λα − λβ

d

√
λ2d +

(λα−λβ)2
d2

(21)
ω∗ = ρ · signλα. (22)

The value of the adjoint variable ν is generally determined
by evaluating the Hamiltonian, (17), at lock time and substi-
tuting in (19)–(22).

In each case, signλα is not fully determined by the
above first order necessary conditions for equilibrium. Con-
sequently, there arises a Dispersal Surface (c.f. [1], [3])
which partitions the region of admissible initial conditions
into a region where D either moves CCW or CW. The
region of admissible initial conditions may be constructed
via backwards integration of the equilibrium kinematics ((21)
and (22) substituted into (2)) from the terminal manifold (or
some particular limiting manifold, depending on the case).
To simplify the process of constructing these regions, we
state the following

Lemma 1. The Attacker’s equilibrium trajectory for the pre-
lock segment of the LEER game, t ∈ [0, tl], is a straight line
in the Cartesian frame.

Proof. The result follows from the simple motion (single
integrator dynamics) of A along with the fact that the cost
functional in (16) is of Mayer-type (i.e., only a function of
the terminal conditions). The details are omitted; a similar
style proof is contained in [11].

Thus, A’s initial position can be obtained using its terminal
Cartesian heading ψ̃∗l = ψ∗l + βl for a particular tl.



IV. THE POST-LOCK ENGAGE OR RETREAT GAME

This section of the paper addresses the definition and
solution of the post-lock segment of the LEER game, which
is needed to solve the pre-lock segment (as dictated by (14)).
The Engage or Retreat Game with an Attacker moving with
simple motion and a Defender whose control appears directly
in the Attacker’s integral cost was formulated and solved
in [5]. This corresponds to D having a lock on A over the
entire game, i.e., L = 1 for all t ∈ [t0, tf ].

When A chooses engagement, D incurs its maximum
cost and has “lost” in some sense. So, generally, D seeks
to make engagement as costly for A as possible to make
retreat a more attractive option for A. Thus the agents play
a zero-sum differential game with JA as a cost functional;
the associated Value function of the differential Game of
Engagement (GoE) is defined as

VE (z0) = min
uA(·)

max
uD(·)

JA (z0;uA(·),uD(·)) , (23)

with the constraint φ (zf ) = df − 1 = 0. The solution of the
game is comprised of the following expression for the Value
function [5]

VE (z) = (w̄ + c) (d− 1) (24)

along with the state-feedback equilibrium strategies [5]

ψ∗ (z) = π, w∗ (z) = w̄, (25)

which corresponds to A aiming directly at the D and D
applying its maximum defense.

For retreat, D wants to encourage A to continue retreating
and thus seeks to minimize A’s cost. The Value function for
the associated optimal control problem is defined as

VR (z0) = min
uA(·),uD(·)

JA (z0;uA(·),uD(·)) , (26)

with the constraint φ (zf ) = df sinβf − yR = 0 which cor-
responds to yf = yR. An additional constraint is necessary
in order to ensure the validity of the Optimal Constrained
Retreat (OCR) trajectory:

VE (z(t))− VR (z(t)) ≥ 0 ∀t ∈ [t0, tf ] , (27)

which essentially requires that engagement must be as costly
or more costly than retreating along the entire retreat tra-
jectory. The manifold VE(z) = VR(z) partitions Ω into a
region where engagement is optimal and a region where
retreat is optimal. The latter may be further partitioned
depending on whether or not A must maneuver around
the engagement region in order to retreat (which occurs
when (27) is activated). Let the partitioning of Ω be defined
as

RE = {z | VE(z) < VR(z)} (28)
RR1

= {z /∈ RE | |x| > x2 or y < y2} (29)
RR2

= Ω \ (RE ∪RR1
) (30)

where

x2 =
w̄ + c+ cA − cyR√

(w̄ + c)
2 − c2

, y2 =
c (w̄ + c+ cA − cyR)

(w̄ + c)
2 − c2

.

(31)

Figure 2 shows the partitioning of the state space for the
parameter settings used throughout the remainder of the
paper. In RR1 , the solution is comprised of the Value
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Fig. 2. Engage or retreat regions. c = 0.5, cA = 2, ρ = 0.8, w̄ = 1, and
yR = −10.

function expression [6]

VR1
≡ VR (z) = c (d sinβ − yR) + cA, z ∈ RR1

(32)

along with the state-feedback equilibrium strategies [6]

ψ∗(z) =
3π

2
− β, w∗(z) = 0, (33)

which corresponds to A running straight down and D holding
fire. In RR2

, the solution is comprised of the Value function
expression

VR2 ≡ VR (z) = ct∗f + cA, z ∈ RR2 (34)

where t∗f is determined numerically; the details are contained
in [6].

Finally, the overall Value function for the post-lock seg-
ment of the LEER game is defined as

VEoR (z) ≡


VE (z) z ∈ RE

VR1 (z) z ∈ RR1

VR2
(z) z ∈ RR2

(35)

V. LOCKED ENGAGEMENT

In this section we analyze the case in which the LEER
game terminates in engagement. Again, the post-lock seg-
ment corresponds to the classical Engage or Retreat Game
discussed in the previous section. Thus in order for engage-
ment to be optimal Attacker behavior, it is necessary for the
state of the system at the time of lock-on to be in the engage
region. We define the region for which lock-on occurs and
engagement is optimal in the LEER game as

LE ≡ {z | z∗l ∈ RE} . (36)

Note the region LE is conditioned on z∗l – the (equilib-
rium) state of the system when D aligns its turret with



A, which is the terminal state for the pre-lock segment.
Therefore, we will utilize the first order necessary conditions
for equilibrium, derived below, to construct the region LE
via backwards integration.

By construction zl ∈ RE and thus the terminal cost
function is obtained by substituting (24) into (14)

Φl (zl, tl) = VE (zl) = (w̄ + c) (dl − 1) , (37)

with the terminal boundary condition given in (15). The
terminal adjoint values are obtained by substituting (37)
and (15) into (19)

λdl = w̄ + c, λα = ν, λβ = 0 (38)

Evaluating (27) at t = tl and substituting in (38) yields the
following pre-lock terminal equilibrium controls

cosψ∗l =
− (w̄ + c)√

(w̄ + c)
2

+ ν2

d2l

, sinψ∗l =
ν

dl
√

(w̄ + c)
2

+ ν2

d2l

(39)
ω∗ = ρ sign ν. (40)

Note ω∗ is constant over t ∈ [0, tl] because ν is constant.
Evaluating (17) at t = tl, substituting in the terminal
adjoints (38) and terminal equilibrium controls (39), (40),
and setting equal to 0 allows ν to be obtained:

ν =
± (w̄ + c) dl√
ρ2d2l − 1

(41)

Lemma 2. The terminal equilibrium controls for Locked
Engagement are given by

cosψ∗l =
−
√
ρ2d2l − 1

ρdl
, sinψ∗l =

− sign (sinα0)

ρdl
(42)

ω∗ = −ρ sign (sinα0) , (43)

Proof. We begin by proving that sign ν = − sign(sinα0).
D wishes to maximize (37) and thus seeks to drive α → 0
with maximum d. Meanwhile, A minimizes (37) and wishes
to terminate as close to D as possible. From (21) cosψ∗ < 0
and thus d is monotonically decreasing over t ∈ [0, tl].
Therefore, D must drive α → 0 as quickly as possible,
which corresponds to turning at its maximum angular rate
towards A: ω∗ = −ρ sign(sinα0). Equating this expression
to (40) yields sign ν = − sign(sinα0). Substituting this
along with (41) into (39) and (40) yields (42) and (43).

Corollary 1. In the region LE there exists a Dispersal
Surface wherein the Defender and Attacker may either turn
CCW or CW and achieve the same Value in the LEER game,
and is defined by

DLE ≡ {z | z ∈ LE, cosα = −1} . (44)

Proof. The Dispersal Surface DLE arises due to the sym-
metry in the problem geometry and the equilibrium controls.
When cosα = −1 we have sinα = 0 and thus the direction
of the equilibrium controls, (42) and (43) is undefined. The
pre-lock segment terminates at a particular dl with αl = 0.
Thus, the initial state wherein cosα = −1 can be reached via

backwards integration with CCW or CW motion. These two
trajectories have the same Value since VE is only a function
of d. This proof is similar to one used in [12]; the interested
reader is referred therein for further detail.

VI. LOCKED RETREAT

There are two regions, RR1
and RR2

, in which A would
choose to retreat. Trajectories beginning in RR1

are un-
constrained, while those beginning in RR2 are constrained.
The solutions will be discussed in Sections VI-A and VI-B,
respectively.

A. LR ending in RR1

Similar to the previous section, we define a region where
retreat is optimal in the LEER game, lock occurs, and
the retreat trajectory is unconstrained (i.e., (27) remains
inactive):

LR1 ≡ {z | z∗l ∈ RR1
} . (45)

Substituting (32) into (14) yields the terminal cost function

Φl (zl, tl) = VR1
(zl) = c (dl sinβl − yR) + cA. (46)

Lemma 3. The terminal equilibrium controls for Locked
Retreat ending in RR1

are given by

cosψ∗l =
−c sinβl

χ
, sinψ∗l =

−c cosβl + ν
dl

χ
(47)

ω∗ = ρ sign ν, (48)

where

ν = −cdl cosβl
ρ2d2l − 1

± cdl

√
cdl cos2 βl

(ρ2d2l − 1)
2 +

1

ρ2d2l − 1
, (49)

χ =

√
c2 sin2 βl +

(
c cosβl −

ν

dl

)2

. (50)

Proof. The proof follows along the process described in
Section III and demonstrated in Section V; the details are
omitted.

Corollary 2. In the region LR1 there exists a Dispersal
Surface, DLR1

, wherein the Defender and Attacker may
either turn CCW or CW and achieve the same Value in the
LEER game.

Proof. The logic is similar to Corollary 1, however, the polar
symmetry from the LE case is lost in the LR case since A
is ultimately heading for the retreat zone. Hence we have no
analytic expression for the surface DLR1

, and as a result, the
surface is computed numerically.

The Dispersal Surface DLR1
partitions LR1 into two

regions wherein D has either CCW motion or CW mo-
tion (which corresponds to the two sign possibilities for
ν in (49)). Computation of DLR1

is thus useful for de-
termining the sign of ν for particular terminal conditions.
This computation is accomplished via coupled backwards
shooting process adapted from [13] wherein we obtain pairs
of trajectories which have equal Value and integrate back to
the same initial condition.



Special care must be taken when backwards integrating
as the state of the system may enter a region where Locked
Engagement becomes optimal. Figure 3 shows an example
trajectory for LR and LE, zLR and zLE , respectively, which
have the same Value. The manifold for which the Value of
LE and LR are identical is akin to the VE = VR manifold
shown in Fig. 2 except that it is a 2D manifold in the 3D
state space.
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Fig. 3. Example trajectories for LE (green) and LR (red) with the same
Value. The open circle is the initial A position, closed circles are the A
position when lock-on occurs. The post-lock trajectories are shown in dashed
lines and an × marks A’s position at tf . Initially, D’s turret is aimed along
the black vector.

B. LR ending in RR2

As in previous sections, we define a region where retreat
is optimal in the LEER game, lock occurs, and the retreat
trajectory is constrained (i.e., (27) is activated):

LR2 ≡ {z | z∗l ∈ RR2
} . (51)

For convenience, the analysis is done in the Cartesian frame
for this case. Substituting (34) into (14) yields the terminal
cost function

Φl (z̃l, tl) = VR2
(z̃l) = ct∗f + cA. (52)

In the Cartesian frame, the terminal manifold (15) becomes

φ (z̃l, tl) = γ1 − arctan

(
yl
xl

)
= 0. (53)

The solution for this case is complicated by the lack of an
analytical expression for t∗f , which is the optimal time for
A to reach the retreat zone while satisfying (27). From [6],
the optimal constrained retreat trajectory for A is comprised
of a straight segment which is tangent to the VR = VE
manifold, a curved segment which rides along the manifold,
and a straight segment departing from (x2, y2) terminating
at (x2, yR). Let ψ̃∗R be the optimal retreat heading for A at
t = tl which is tangent to the VR = VE manifold. Then,

specializing (19) the pre-lock terminal adjoint values are

λ(tl) =
∂VR2

∂z̃
+ ν

∂φl
∂z̃

(54)

=⇒ λxl = −c cos ψ̃∗R + ν
yl

x2l + y2l
(55)

λyl = −c sin ψ̃∗R − ν
xl

x2l + y2l
(56)

λγl = ν. (57)

Note that ∂VR2

∂z̃ is derived in the Appendix.

Lemma 4. The terminal equilibrium controls for Locked
Retreat ending in RR2

are given by

cos ψ̃∗l =
−λxl√
λ2xl + λ2yl

, sin ψ̃∗l =
−λyl√
λ2xl + λ2yl

(58)

ω∗ = ρ sign ν (59)

where λxl , λyl , λγl are given in (55)–(57), ψ̃∗R is computed
numerically, and

ν =
−b±

√
b2 − 4ac2

2a
(60)

where

a =

(
1

x2l + y2l
− ρ2

)
(61)

b = 2c

(
yl cos ψ̃∗R − xl sin ψ̃∗R

x2l + y2l

)
. (62)

Proof. The proof follows along the process described in
Section III but in the Cartesian frame; the details are omitted
for space.
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Fig. 4. Example trajectory for LR ending in RR2
. The initial turret look

angle is shown by the black arrow. A starts at the open circle, gets locked-
onto at the closed red circle, enters the constrained arc at the upper black
circle, leaves the VE = VR manifold at the lower black circle, and reaches
the retreat zone at the ×.



VII. FULL SOLUTION

In this section we utilize the results of the previous
sections to develop the solution over the whole state space.
In particular, the state space is partitioned into 5 distinct
regions in which a particular A behavior and termination is
optimal – LE, LR ending in RR1

or RR2
, UE, and UR.

Along the boundaries of these regions, A may have two or
more choices which yield the same Value, J∗A, in the LEER
game. Because the state space Ω is in 3D, the regions are 3D
as well, and the boundaries are 2D manifolds in 3D space. In
order to visualize the partitioning in a more meaningful way,
we fix the initial look angle of D’s turret. Then the regions
correspond to initial A positions (in 2D) and the boundaries
become 1D. For a particular initial turret look angle, γ0, the
1D boundaries are obtained by identifying the appropriate
terminal manifold(s) and extending A’s position backwards
in time using the associated terminal equilibrium heading
until γ = γ0.

For Locked Engagement there are two critical configura-
tions to consider: 1) lock-on occurs exactly when A reaches
D (dl = 1) and 2) lock-on occurs exactly when VE = VR.
The first is critical in the sense that, for LE, we require
that lock-on actually occur; the limiting case is when it
occurs just before the overall LEER game terminates. The
boundary obtained via backwards integration from dl = 1
divides the LE and UE regions – that is, if A is initialized
inside this boundary, A can reach D and avoid being locked-
on. The terminal manifold VE = VR is critical because for
engagement to be optimal, A must be in RE by the time
lock-on occurs; the limiting case is A just barely reaches RE

when cosα → 1. Backwards integration from this terminal
manifold divides the LE and LR regions.

For Locked Retreat, we further distinguish LR ending in
RR1

or RR2
. LR ending in RR1

has one critical terminal
manifold: lock-on occurs exactly when A reaches the retreat
zone (yl = yR). The associated boundary divides LR ending
in RR1 from UR – that is, if A is initialized below this
boundary, A can reach yR and avoid being locked-on.
LR ending in RR2

has one critical terminal manifold in
which lock-on occurs exactly when A reaches the boundary
between RR1

and RR2
(|xl| = x2, yl > y2). The associated

boundary merely distinguishes between LR ending in RR2

versus RR1 .
The terminal manifolds identified above do not all have the

same cost. Depending on the problem parameters (ρ, c, w̄),
points on the boundary between LE and LR must be obtained
by integrating back from equi-Valued terminal manifolds
(instead of the critical terminal manifolds identified above).
Figures 5 and 6 each show an example partitioning for a
particular γ0.

VIII. CONCLUSION

In this paper we extended the canonical engage or retreat
game by considering the Defender to have a turn-constrained
turret. The focus was on the cases in which the Defender
could aim its turret onto the Attacker’s position prior to the
Attacker reaching either the engagement or retreat terminal
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surfaces. For Locked Engagement and Locked Retreat, the
equilibrium control strategies for the Attacker and Defender
were derived as a function of the terminal state. Using
backwards integration, these strategies were used to construct
a partitioning of the state space whose regions correspond to
the various terminal cases.

Extensions to this work include a fuller treatment of
the Unlocked Engagement and Unlocked Retreat cases –
in particular, a means by which to generate valid UE and
UR trajectories (which can be guaranteed avoid turret lock-
on). Additionally, the characterization and construction of the
Dispersal Surface existing in the constrained Locked Retreat
region is necessary for a full solution. Lastly, this paper
presents results for a particular set of parameters; it would
be worthwhile to characterize the solution across a range of
parameters.
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APPENDIX

This appendix contains a derivation of the constrained
retreat Value partial derivatives ∂VR2

∂z̃ . Let σ ≡ ∂VR2

∂z̃ =[
σx σy σγ

]>
. We are concerned with the post-lock seg-

ment wherein lock-on has occurred, and thus γ no longer has
any bearing on the optimality since D has sufficient control
authority to maintain the lock-on (i.e., keep cosα = 1).
Therefore, σγ = 0. Thus the Hamiltonian for the retreat case
in the Cartesian frame is

HR = σx cos ψ̃R + σy sin ψ̃R (63)

Here, the terminal cost function is simply ΦR (z̃f , tf ) =
ctf + cA, and the terminal manifold is φR (z̃f , tf ) = yf −
yR = 0 [6]. The value of HR at the post-lock termination
is [4]

HR(tf ) = −∂ΦR
∂tf

− µ∂φR
∂tf

= −c. (64)

The Attacker must minimize HR, and thus

cos ψ̃∗R =
−σx√
σ2
x + σ2

y

, sin ψ̃∗R =
−σy√
σ2
x + σ2

y

. (65)

Evaluating (65) at t = tf and substituting into (63) gives

HR(tf ) = −
√
σ2
x + σ2

y = −c. (66)

Substituting (66) into (65) yields the desired expressions:

σx = −c cos ψ̃∗R, σy = −c sin ψ̃∗R. (67)
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